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Objective of the Workshop

Modern fiber reinforced polymers (FRP) show a macroscopic material behavior
depending sensitively on the fiber orientation distribution and arrangement as well
as on the generally nonlinear material behavior of the constituents. Additionally, the
overall composite behavior is influenced by fluid-structure interaction, by curing
during the production process as well as by the interface properties. Understanding
the correlation of both the microstructure and the micromechanical behavior on
the one side, and the macroscopic composite behavior on the other side, is of
fundamental interest for the design of materials, the optimization of production
processes as well as the dimensioning and optimization of construction parts.
In this workshop, new approaches for the material modeling of short and long
fiber reinforced composites, corresponding numerical solution strategies, and
experimental techniques are discussed. Special emphasis is given to the modeling of
process chains. The International Research Training Group "Integrated Engineering
of continuous-discontinuous long fiber reinforced polymer structures", funded by the
German Research Foundation (DFG), provides a structured educational program for
several PhD students focusing on research in the areas of materials science, product
engineering, mechanics, production science and light-weight technologies.

The Organizers

Prof. Dr.-Ing. habil. Thomas Bohlke
Prof. Dr.-Ing. habil. Rolf Mahnken
GRK 2078 International Research Training Group
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Reference-graphic by Pascal Pinter, A novel Method for Determination of Fiber Length Distributions from ;CT-data,
P. Pinter, B. Bertram, K. Weidenmann (KIT), Karlsruhe, Germany
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Effective and efficient modeling of viscous short-fiber
reinforced polymer flow

Roébert Bert6ti and Thomas Bohlke

Chair for Continuum Mechanics,
Institute of Engineering Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract. For the effective modeling of viscous short-fiber reinforced polymer flow,
so called Fiber Orientation Tensors (FOTs) are used [1]. The FOTs describe the
microstructure of a fluid-fiber mixture on the macro scale in an effective manner. In
the current work, Fiber Orientation Vectors (FOVs) are also used which describe the
microstructure of the fluid-fiber mixture on the micro scale in a discrete manner. The
evolution equations of the FOVs and the FOTs are all based on Jeffery’s equation [2].
The effectiveness and efficiency of the FOTs vs. the FOVs is shown in this work on the
example of a numerical implementation for simple flow cases.

Not only the fluid-fiber interaction, but also the fiber-fluid interaction is described in
an effective way. A two step homogenization method, based on a Hashin-Shtrikman
bound [3], is used to calculate the flow induced anisotropic viscosity of the fluid-fiber
mixture. This method is compared numerically to the Dinh-Armstrong constitutive
model [4] by means of simple flow cases.

References
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(n)- and (n + 1)-layered composite sphere models for
thermo-chemo-mechanical effective properties

Christian Dammann, Rolf Mahnken, and Peter Lenz

Chair of Engineering Mechanics,
Paderborn University, Paderborn, Germany

Abstract. Our work presents extensions of multi layered composite sphere models known
from the literature [1, 2, 3] to temperature-dependent elastic effects accompanied
by curing. Effective properties in dependence on the degree of cure are obtained
by homogenization for a representative unit cell (micro-RVE) on the heterogeneous
microscale. To this end, analytical solutions for (n)- and (n + 1)-layered composite
sphere models, [3, 4], are derived, in addition to Voigt and Reuss bounds resulting
from the assumption of a homogeneous mixture. For simplification, we restrict the
material behavior of the micro-RVE to a thermo-chemo-mechanical coupling with
linear elasticity. In a numerical study we compare different effective material properties
including bounds.
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Transformation strains and variant interaction for bainitic

variant evolution.

Ulrich Ehlenbroker!, Manuel Petersmann?, Thomas Antretter?, and Rolf Mahnken'

! Chair of Engineering Mechanics,

Paderborn University , Paderborn, Germany
2 Institute of Mechanics,

Montanuniversitidt Leoben, Leoben, Austria

Abstract. The evolution of the baintic phase in steel is of particular relevance
especially in industrial production processes encompassing hot-forming and quench-
ing of larger components. For that reason a multi-scale model for bainitic phase
transformation in multi-variant polycrystalline low alloy steels has been developed
[1].

In order to yield relasitic simulation results, the microscopic conversion procedures
for the austenite-to-bainite transformation have to be described in an appropriate way:.
To that end, the transformation strains for the crystallographic variants in the model
have been adjusted. For the calculation of transformation strains, different theories
can be applied, e.g. a hierarchical block-structure as described in [2] for the martenstic
phase transformation in a 9Ni-steel, or a theory solely based on the lattice parameters
of the two phases (austenite and bainite) and the assumption that the transformation
leaves a close packed plane and a close packed direction in that plane unrotated, in
other words the measured orientation relationship for the transformation (see [3]).
Further, a mechanism for the simulation of variant interaction between the different
crystallographic variants, based on the theory of transformation hardening, has been
introduced into the model (see [4]).

References
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modeling of bainitic phase transformation in multi-variant polycrystalline low alloy
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Consistent macroscopic tangent computation for
FFT-based homogenization

Felix Selim Gokiiziim and Marc-André Keip

Institute of Applied Mechanics (Civil Engineering), Chair I
University of Stuttgart, Stuttgart, Germany

Abstract. Lately, the FFT-based method suggested by MOULINEC & SUQUET [1] has
increased in popularity due to its superior computational speed. The present work
gives a computational framework for evaluating the consistent tangent for FFT-based
homogenization. It is inspired by the works on multiscale FEM, see e.g. MIEHE ET AL.
[2]. The proposed consistent tangent for FFT-based approaches offers an alternative to
numerical tangents calculation, which are carried out by perturbing the single strain
components. Especially in the context of multi-scale methods, e.g. FE? or FE-FFT [3,4],
the computation of a consistent macroscopic tangent is crucial. Computing the tangent
numerically can be costly with respect to computational time and might even surpass
the computational time needed for solving the initial mechanical equilibrium. We will
show that the use of an algorithmic tangent offers a more efficient and faster calculation
of the macroscopic tangent, however, it comes with the drawback of an increased
memory storage demand. The viability of the method holds for linear as well as for
nonlinear material behaviour, including viscoelasticity and large strains as discussed
in KABEL ET AL. [5].

References
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Considering the fiber orientation for the computation of
the hyperelastic Tucker average for short fiber reinforced
composites

Niels Goldberg!, Felix Ospald?, Matti Schneider?, and Jérn Ihlemann'

! Professorship of Solid Mechanics, Faculty of Mechanical Engineering,
TU Chemnitz, Chemnitz, Germany

2 Professorship of Partial Differential Equations, Faculty of Mathematics,
TU Chemnitz, Chemnitz, Germany

3 Fraunhofer ITWM, Kaiserslautern, Germany

Abstract. In this contribution we apply a fiber orientation-adapted integration scheme
to the computation of the Tucker average of non-linear material laws for short
fiber reinforced composites based on angular central Gaussian fiber orientation
distributions. We establish a reference scenario for fitting the Tucker average of a
transversely isotropic hyperelastic energy to microstructural simulations, obtained by
FFT-based computational homogenization. We carefully discuss ideas for accelerating
the identification process, leading to a tremendous speed-up compared to a naive
approach. The resulting hyperelastic material map turns out to be surprisingly
accurate, simple to integrate in commercial finite element software and fast in its
execution. We demonstrate the capabilities of the extracted model by a finite element
analysis of a fiber reinforced chain link.



Stress-strain characterization and damage modeling of
glass fiber reinforced polymer composites with vinylester

matrix

Jonas Hund', Christian Leppin?, Thomas Bohlke?, and Jan Rothe?

I Institute of Mechanics,

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Suisse Technology Partners AG,

Neuhausen am Rheinfall, Switzerland
3 Institute of Engineering Mechanics,

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract. Beyond a certain loading threshold, glass fiber reinforced polymer compos-
ites with vinylester matrix exhibit considerably nonlinear deformation behavior due
to damage of the matrix material. To model such nonlinear deformation properties,
an approach of a fully anisotropic damage model suggested by Govindjee et al.[1]
is considered. In addition, the inter-fiber fracture criterion introduced by Puck[2] is
used for the damage function which defines the damage initiation and the material
strength. For identifying the material properties as well as validating the model
three GFRP laminates with different layups are tested in tension under different
loading orientations, assuming laminate theory to be reasonably well fulfilled. Further
experiments are compared with corresponding simulation results to demonstrate the
performance of the model.

References

[1] Govindjee, S., Kay, G.J., Simo, ].C.: Anisotropic modelling and numerical simulation
of brittle damage in concrete, International Journal for Numerical Methods in
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Efficient hourglass control in FFT-based computational

homogenization

Matthias Kabel and Matti Schneider

Department of Flow and Material Simulation, Fraunhofer ITWM, Kaiserslautern

Abstract. The FFT-based homogenization method of Moulinec and Suquet [1] is a fast
and memory-efficient solver posed on regular voxels grids and is well adapted for
elastic simulations on complex microstructures of fiber reinforced plastics. Originally,
the method used Fourier polynomials to discretize the continuous version of the
Lippmann-Schwinger equation, which lead to convergence problems at high material
contrasts (e.g. pores and defects). Recently, many groups are working on using
alternative discretizations in combination with the FFI-based method: Voxelwise
constant strains [2], finite differences on a staggered grid [3], trilinear hexahedral
elements with reduced integration [4] and trilinear elements with full integration [5].

All of these discretization have major drawbacks: No explicit formula for the Green’s
operator, material function has to be evaluated on a double fine grid, hourglassing
or high computational effort. In our talk we will propose a computational efficient
way to insert an artificial stiffness to the hourglass deformation modes [6] utilizing
the reference material and assess the solution quality as well as the computational
efficiency of this new discretization.
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Questions regarding the development of mapping
algorithms for short fiber reinforced composite modeling

Christian Liebold', Dr. André Haufe', and Prof. Dr.-Ing. Peter Middendorf?

! DYNAmore GmbH,
IndustriestrafSe 2, Stuttgart, Germany
2 Institute of Aircraft Design,
University of Stuttgart, Germany

Abstract. This work will emphasis the importance of a proper data transformation
from the process simulation to the finite element mesh for structural analysis.
As an example, two modeling approaches for short fiber reinforced composites
within a commercial finite element code will be compared. Thereby, different
homogenization, averaging and interpolation techniques will be introduced and
discussed. In [1], interpolation and averaging techniques for scalar values such as
strains and thicknesses based on the finite element integration methods have been
developed, not covering the topic of a proper consideration of tensorial data. This is
crucial since standard averaging methods will lead to the loss of information about
the tensors” shape being described by its eigenvectors and eigenvalues and thereby,
the loss of information about the degree of anisotropy. A method to overcome this
problem is introduced in [2] and will be discussed within this work. Averaging and
interpolation techniques for scalar values such as they are described in [3] will be
introduced as well, trying to identify the most reliable averaging method. The gained
knowledge about proper data transformation and homogenization shall be applicable
for further processing techniques such as continuous fiber reinforced composites or
metal forming.

The influence of scattering data from process simulation on the results of structural
analysis will be discussed as well.

References
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Investigating the fibre length distribution from CT
images using fibre endpoints

Jan Niedermeyer and Claudia Redenbach

TU Kaiserslautern, Kaiserslautern, Germany

Abstract. Estimating the fibre length distribution in fibre reeinforces polymers from
CT data is still a challenge. Image quality usually does not allow a full fibre
segmentation.

Using Gaussian curvature we can segment the fibre endpoints from a CT image. By
interpreting these endpoints as a point process we can then use point process statistics
to investigate properties of the underlying fibre process.

[1] proposed a method to estimate the fibre length distribution from an endpoint
process. We further investigate Ripleys K function and the pair correlation function
to receive information of the fibre length distribution.

References

[1] M. Kuhlmann, C. Redenbach (2015). Estimation of fibre length distributions from
tibre endpoints. Scandinavian Journal of Statistics. 42, (4), 1010-1022 (2015)



Theoretical modeling of biologically inspired composite

materials

Federica Ongaro

School of Engineering and Materials Science (SEMS),
Queen Mary University of London, London, UK

Abstract. Many efforts have been devoted to the prediction of the effective properties
of regular cellular materials with empty cells [1]. In reality, at the microscale, many
biological tissues display a peculiar cellular structure having the internal volumes
filled with fluids, fibers, or other bulk materials. Similar composite solutions are found,
for example, in the natural tubular structures like plant stems or animal quills. In these
systems, the inner honeycomb or foam-like core behaves like an elastic foundation
supporting the dense outer cylindrical shell and makes it more performant [2]. Though
some authors numerically and theoretically analyzed the morphology, composition
and mechanical behavior of filled cellular materials, up to date closed-form expressions
for the effective elastic moduli and constitutive equations have not been derived.
To contribute filling this research gap and to provide some useful tools for practical
applications, I will initially present a continuum model for two-dimensional cellular
materials having a hexagonal microstructure and the cells filled by a generic elastic
material, modeled as a series of closely spaced, independent linear-elastic springs
(Winkler foundation). The analysis is then extended to the case of elongated hexagonal
cells to study the mechanics of orthotropic composite cellular materials, inspired by the
keel tissue of the ice plant [3]. Finally, in the last part of my talk, I will investigate the
effects of adding structural hierarchy [4] into a composite cellular material. Specifically,
I will focus on composite cellular materials composed by structural elements which
themselves have a structure. The proposed approach is general enough to be applied
to a very wide range of materials, including long fiber reinforced composites.
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Mircrostructure characterization of fiber reinforced
polymers based on parametrized space curves derived
from pCT data

Pascal Pinter and Kay André Weidenmann

Institute for Applied Materials,
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract. Microstructural data is crucial for modelling of fiber reinforced polymers.
There are many image features that can be used to describe the fiber architecture
using micro computed tomography analysis. Since it is difficult to track fibers in
volumetric images, it is even possible to calculate fiber orientations voxel based [1]
without knowing about the connection to adjacent voxels. This method is state of the
art and is implemented in many commercial toolkits like e.g. VGStudio Max. In recent
years, micro computed tomography has gained image quality intensively. This enables
to acquire high resolution images which are necessary to track fibers correctly from
one end to the other. But most of the currently available software is only applicable for
short fiber reinforced polymers [2] or there is no possibility to evaluate fiber curvature
[3].

In this work, an algorithm is introduced to parametrize a space curve for each
tiber within the scanned sample. This method offers the full information about fiber
architecture and allows for deriving orientation tensors or curvatures directly from the
parametrized curves.
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Characterization of a short fiber-reinforced polymer

Céline Rohrig and Stefan Diebels

Lehrstuhl fiir Technische Mechanik,
Universitdt des Saarlandes, Saarbriicken, Germany

Abstract. This contribution presents ideas, how composite materials can be
characterized with respect to experimental testing. Due to the huge number of
possible combinations of matrix and filler, each composite material has its own
characteristics. In this work a polybutylene terephthalate (PBT) reinforced by short
glass fibers is characterized. An overview of the properties of the investigated material
is obtained from results of cyclic uniaxial tensile tests at constant strain rate. The short
tiber reinforced PBT shows elasto-plasticity and damage. These properties depend on
a fiber orientation angle, which is investigated by testing specimens with different
angles compared to the main fiber orientation. For the evaluation the complete strain
information in all directions is obtained by an optical area analysis over the whole
surface using a digital image correlation (DIC) software. The optical system uses four
cameras to realize a 360°-3D-measurement by a two-sided stereography. A final aim
of this work is to realize a verification experiment representing the three-dimensional
forming process as realistically as possible. Therefore a deep-drawing based testing
device, a Nakajima test for polymeric materials is presented and first results of the
experimental investigations are shown. Thereby an optical deformation measurement
system is also used for the evaluation of the specimen deformation. Finally a first idea
for a one-dimensional modeling description based on the experimental results of the
uniaxial tensile tests is presented for further research.

The authors are grateful to the BMBF (Federal Ministry of Education and Research -
Bundesministerium fiir Bildung und Forschung) for financial support through the grant
number 05M2013-MuSiKo.



Characterization and parameter identification of
multi-axial behavior in sheet molding compounds

Malte Schemmann and Thomas Bohlke

Chair for Continuum Mechanics,
Institute of Engineering Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract. Due to their high lightweight potential, economical mass-production and
excellent formability, discontinuous fiber reinforced composites are increasingly
used for nonstructural components in the automotive sector. The application of this
class of materials is however hindered by a lack of an understanding for robust
modeling the whole process chain as well as the process related thermo-mechanical
process-dependent properties. The material class under consideration is SMC (sheet
molding compound), a thermoset matrix reinforced with glass fibers.

The damage behavior of SMC is characterized in uniaxial and biaxial tensile tests,
whereas multiple loading ratios are considered to identify damage initiation and
evolution. An optimization of the cruciform specimen geometry was performed to
observe damage in the area multiaxial stresses. The multi-objective optimization
criterion ensures a damage localization in the area of interest instead of the specimen
arms, as well an as homogeneous as possible stress state in that area [1].

In experiments the full strain field is measured with digital image correlation. Due to
the inhomogeneity of the stress and strain fields an inverse parameter identification
is required to obtain the material properties [2, 3]. Hereby a Gauss-Newton type
Algorithm is used to identify parameters of a FEM simulation in a way, such that the
simulated and measured strain fields deviation is minimal.
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Comparison of the micromechanical crack orientation in

longfiber-reinforced composites to Puck’s theory
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Abstract. The micromechanical crack orientation in longfiber-reinforced
composites is compared to the crack angle prediction of PUCK’s fracture criterion.
PUCK’s model is one of the best performing macroscopic criteria in the World-Wide
Failure Exercise I [1] and II [2]. As a unique feature among phenomenological
failure conditions, it provides the orientation of the fracture plane in the inter-fiber
failure mode for a single ply, which is characterized by a fracture angle. Before
a macroscopic crack occurs in a lamina, cracks evolve on the fiber-matrix level.
Hence, a microscopic approach by using a single-fiber Repeating Unit Cell (RUC)
is used to investigate this mechanism on the finer scale and its influence on the
effective properties. In this approach, interfaces with an elasto-damage constitutive
model are inserted into the discretized RUC along the interelement boundaries to
represent matrix cracking and fiber-matrix debonding. The distribution of failed
interface elements is analyzed and compared to PUCK’s results for uniaxial stress
states as well as for in-plane biaxial loading. The microscopic boundary value
problem is solved with the High-Fidelity Generalized Method of Cells [4].
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Generating fiber-filled volume elements with high
volume fraction and prescribed fourth order fiber

orientation tensor
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Abstract. The digital material cycle for fiber reinforced plastics crucially depends on
microstructures capturing the fiber volume fraction and the fiber orientation. Short
tiber composites used in the industry generally feature a large volume fraction and
high fiber aspect ratio.

In this talk I will introduce a fast and robust method to generate volume elements
including straight cylindrical fibers of equal length. It is based on a reformulation of
the microstructure generation problem for prescribed fourth order fiber orientation
tensor in terms of an energy minimization problem, which is then solved numerically.
In contrast to existing methods, high accuracy (five significant digits for the fiber
orientation tensor), large fiber aspect ratios (up to 150) and large volume fractions
(50 volume—% for isotropic orientation and aspect ratio of 30) can be reached. The
talk closes with a small study on the effective linear elastic properties of the resulting
microstructures, depending on fiber orientation, volume fraction as well as aspect
ratio.



Conditions for phenomenological anisotropic damage

models derived from micromechanics
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Abstract. The talk investigates the modeling of irreversible anisotropic brittle and
ductile damage based on second and fourth order damage tensors and its connection
to micromechanical material models. In particular, the conditions for strictly increasing
damage are discussed. Restrictions on the form of the free energy function and
the damage evolution law are proposed. These are motivated by energetical,
scale-bridging considerations for growing cracks and pores. Moreover, conclusions are
drawn related to the damage-induced evolution of the yield surface in plasticity.



Error-controlled homogenization for a class of linear
elastic disordered materials

Xiaozhe Ju and Rolf Mahnken
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Abstract. The notion of model adaptivity has been well established, aiming at
adaptive selection of mathematical models from a well defined class of models (model
hierarchy) to achieve a preset level of accuracy (see e.g. [1,2]). The present contribution
addresses its application to a class of linear elastic composite problems. We will show
that the classical bounding theories according to [3,4] can provide a model hierarchy
in a natural and theoretically consistent manner, without combination of different
methods using a priori knowledge. As a further benefit, the resulting computational
scheme reduces to a single-scale one. To arrive at computable higher order bounds,
the classical singular approximation following [5] is made. As a new finding, this
may, under certain circumstances, give rise to an overlap effect. To overcome this,
a correction is proposed. Additionally, the model adaptivity is coupled to the well
established adaptive finite element method (FEM), such that both macro model and
macro discretization errors are controlled. The proposed adaptive procedure is driven
by a goal-oriented a posteriori error estimator based on duality techniques. For efficient
computation of the dual solution, a patch-based recovery technique is proposed, where
a comparison with other existing methods is also given. For illustration, numerical
examples are presented.
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