Investigation of Interlaminar Fracture Mechanics of FRP using Digital Image Correlation

Dr.-Ing. Matthias Merzkirch
Guest Researcher, Postdoc, Matthias.Merzkirch@nist.gov
Lecture/Workshop @ KIT, April 23rd - 26th, 2019
Concept & Aims of Lecture/Workshop

• **Interdisciplinary lecture/workshop:**
 – 4 days: Tuesday through Friday
 – Theoretical and experimental parts, tutorials
 – Handouts in English will be provided (‘fill in the gaps’)
 – Presentation in German (or English, if preferred)

• **Theoretical parts:**
 – Computational material science and manufacturing as motivation (‘Why testing?’)
 – Background/mechanics of fracture experiments
 – Different types of experiments for fracture testing on prototypical UD composites
 – Design of experiments (‘Everything is of interest but what/how much data is actually needed?’)
 – Experimental setup (MTS and DIC)
 – Data analysis and reduction
 – Sensitivity analysis (‘3 x same type of test vs. 1 test with 3 different views?’)

• **Experimental parts and tutorial – knowledge transfer:**
 – Prototypical material: CFRP – UD and/or fiber reinforced material of interest
 – Design of experiments:
 • Selected types of experiments
 • Experimental setup (MTS and DIC)
 – Data analysis and reduction
 – Sensitivity analysis
 – Discussion of results

• **Aims:**
 1. Interdisciplinary view on experimental testing
 2. Challenges in mechanical fracture testing
 3. Data interpretation (sensitivity analysis)
Motivation & Outline of Lecture/Workshop

1. **Models** need ‘data’ for crash simulation!
 - How do models look like? What data is needed?

2. What is the appropriate **Experiment**?
 - What test method(s) provide the data needed?

3. Enhanced **Manufacturing** of complex composites
 - Restrictions/necessary improvements for the experiment?

UD: **Interlaminar Fracture Testing:** Mode I and Mode II

→ Full description for cohesive zone modeling via traction separation laws
Agenda 1-2

Tuesday, 23.04. (5.5 h)
- Introduction:
 - Matthias Merzkirch & NIST
 - Audience
- Motivation:
 - Automotive & aerospace
 - Lightweight aspect
 - Computational material science: Cohesive Zone Models & Traction Separation Laws
- Digital Image Correlation - A short introduction:
 - Patterning
 - Principle of 2D and stereo DIC
 - Calibration
 - Examples
- Recommended literature
- Discussion, design and planning of experiments:
 - Interdisciplinary needs and expectations

Wednesday, 24.04. (5.5 h)
- Fracture testing of fibrous composites: overview
- Crack Tip Tracing with DIC
- Mode I testing (double cantilever beam flexure):
 - Principle
 - Photomechanics
- Fracture toughness G_I acc. to:
 - ASTM
 - DIN
 - ISO
 - Non-standardized methods
- Sensitivity analysis
- Restrictions and challenges
- Through thickness properties:
 - Photomechanics & analytical solutions for traction separation law
- Tutorial
Agenda 3-4

Thursday, 25.04. (5.5 h)
- Mechanics of flexural testing (3pt bending)
 - Shear stress and shear deformation
- Mode II testing (3pt end-notched flexure):
 - Principle
 - Photomechanics
- Fracture toughness G_{II} acc. to:
 - ASTM & DIN
 - Non-standardized methods
- Mode II testing (calibrated end-loaded split flexure):
 - Principle
 - Photomechanics
 - Fracture toughness G_{II}
- Comparison types of tests
- Restrictions and challenges
- Photomechanics - Traction separation law
- Tutorial

Friday, 26.04. (4.5 h)
- Discussion of results on fracture properties:
 - Mixed Mode behavior
 - Cohesive Zone Model & Traction Separation Laws
- Comparison of Young’s Moduli:
 - E_T From tensile test
 - Flexural testing
 - 3 pt
 - 4 pt
 - Double cantilever
 - End loaded split test (single cantilever)
- Exam (1 h):
 - ECTS: 2
- Evaluation