

Seminar series of the Graduate School GRK 2078

Referee:	Prof. Jan Zeman Czech Technical University in Prague
Date:	Thursday, February 23, 2023
Time:	10:00-11:00h
Location:	Building 10.23, 3 rd floor, seminar room 308.1 Please note that you can also participate in the event online
Title:	Wang tiles for modular-topology optimization of compliant structures and mechanisms

Abstract

Two contemporary research challenges are relevant to structural design: automation and sustainability. In this contribution, we address both by considering the optimal design of structures containing a limited number of repeating patterns (modules). The proposed *modular-topology optimization* framework, introduced in the talk, involves:

- 1. The design of module topologies.
- 2. Encoding admissible module connections.
- 3. The placement of modules at the structural scale.

In our initial work on this topic [1], we optimized compliance of modular trusses via a concurrent method based on meta-heuristics (operating at the module scale) and a conic program (generating optimal module topologies). Following [2], we present a computationally more attractive sequential strategy applicable to non-convex module design problems, including continuum topology optimization of reusable structures and compliant mechanisms.

Our strategy starts with a solution to the free-material optimization problem at the product scale, which we enhance to suppress emerging checkerboard patterns. Subsequently, we develop a novel deterministic clustering algorithm to partition the optimized elasticity tensors into a specified number of clusters while maintaining symmetries in the dataset. Utilizing the Wang tiling formalism [3], we subsequently convert the clusters to efficient assembly plans with a tunable number of module interfaces. Finally, we optimize the modules with single-scale topology optimization, reducing design space due to modularity.

We demonstrate the efficacy of the proposed method with three two-dimensional benchmarks of topology optimization. Besides the classical Messerschmitt-Bölkow-Blohm beam, we present, for the first time to the best of our knowledge, optimized modular designs of an inverter and a gripper. We complement these examples with the fourth one, which combines a gripper and an inverter, illustrating the reusability of the optimized modules. We compare the performance of the optimized modular structures against uni-modular and non-modular designs, thereby quantifying performance gains and losses induced by modularity.

These results follow from joint work with Marek Tyburec, Martin Doškář, and Martin Kružík.

Acknowledgments. This work received support from the Czech Science Foundation Project No. 19-26143X.

References

[1] Tyburec, M., Zeman, J., Doškář, M., Kružík, M., & Lepš, M. (2021). Modular-topology optimization with Wang tilings: an application to truss structures. Structural and Multidisciplinary Optimization, 63(3), 1099–1117. <u>http://doi.org/10.1007/S00158-020-02744-8</u>
[2] Tyburec, M., Doškář, M., Zeman, J., & Kružík, M. (2021). *Modular-topology optimization of structures and mechanisms with free material design and clustering*, Computer Methods in Applied Mechanics and Engineering 395 (2022), 114977. http://dx.doi.org/10.1016/j.cma.2022.114977

[3] Wang, H. (1961). Proving Theorems by Pattern Recognition - II. Bell System Technical Journal, 40(1), 1–41. <u>http://doi.org/10.1002/j.1538-7305.1961.tb03975.x</u>

You are cordially invited to take part in the event.

Prof. Dr.-Ing. Thomas Böhlke (Spokesperson of GRK 2078)

Jun.-Prof. Dr. Matti Schneider